IL BUCO NELL'OZONO 

 

 


La stratosfera terrestre contiene una concentrazione relativamente alta di ozono, un gas costituito da tre atomi di ossigeno (O3) e che rappresenta un vero e proprio schermo nei confronti delle pericolose radiazioni ultraviolette (raggi UV) provenienti dal sole. Ogni anno, durante la primavera dell’emisfero australe, la concentrazione dell’ozono stratosferico nell’area situata in prossimità del Polo Sud diminuisce a causa di variazioni naturali. Purtroppo, a causa degli inquinanti rilasciati in atmosfera, sin dalla metà degli anni settanta questa periodica diminuzione è diventata sempre più grande, tanto da indurre a parlare del fenomeno come del “buco dell’ozono”. Recentemente si è comunque individuato un assottigliamento della fascia di ozono anche in una piccola zona al polo Nord, sopra il Mare Artico, fatto che potrebbe preludere alla formazione di un altro buco dalla parte opposta.
In effetti il fenomeno non rappresenta nient’altro che l’aspetto più evidente della generale e graduale diminuzione dell’ozono nella stratosfera. Il problema è estremamente importante in quanto una riduzione dell’effetto schermante dell’ozono comporta un conseguente aumento dei raggi UV che giungono sulla superficie della Terra. Nell’uomo l’eccessiva esposizione a questi raggi è correlata ad un aumento del rischio di cancro della pelle, generato a seguito delle mutazioni indotte nel DNA delle cellule epiteliali. I raggi ultravioletti possono causare inoltre una inibizione parziale della fotosintesi delle piante, causandone un rallentamento della crescita e, nel caso si tratti di piante coltivate, una diminuzione dei raccolti. I raggi UV possono anche diminuire l’attività fotosintetica del fitoplancton che si trova alla base della catena alimentare marina, causando di conseguenza uno scompenso notevole a carico degli ecosistemi oceanici.

 

buco dell'ozonoIl continuo e graduale impoverimento dell’ozono della stratosfera può essere senz’altro ricondotto alla presenza in atmosfera di un gran numero di composti chimici in grado di attaccare l’ozono. Queste sostanze vengono anche definite ODS, Ozone Depleting Substances (sostanze che distruggono l’ozono). Gli ODS sono generalmente molto stabili nella troposfera e si degradano solamente per l’intensa azione della luce ultravioletta nella stratosfera; quando si spezzano, rilasciano atomi di cloro e di bromo che danneggiano l’ozono.
Per avere un’idea quantitativa degli effetti causati dai composti ODS è stato concepito
il potenziale di eliminazione dell’ozono (ODP, Ozone Depleting Potential), un numero che si riferisce all’ammontare della riduzione dell’ozono causata da un composto ODS.

Per la precisione l’ODP viene determinato sulla base del numero di atomi di cloro e di bromo presenti nella molecola, dalla “vita” atmosferica del composto (il tempo totale di permanenza nell’atmosfera, che varia da pochi mesi a migliaia di anni) e dagli specifici meccanismi implicati nella sua degradazione. L’ODP è il rapporto tra l’impatto sull’ozono di un composto chimico e l’impatto causato dal CFC-11 avente la stessa massa della sostanza presa in considerazione. Così, l’ODP del CFC-11 è definito pari a 1.

Le sostanze più implicate nel fenomeno del buco dell’ozono e più in generale nella riduzione dell’ozono stratosferico sono i
Clorofluorocarburi (CFC). I CFC sono composti costituiti da Cloro, Fluoro e Carbonio. Questi composti sono comunemente utilizzati come refrigeranti, solventi ed agenti propellenti. I più comuni CFC sono i CFC-11, CFC-12, CFC-113, CFC-114 e il CFC-115. Il potenziale di danno all’ozono (ODP) per ognuno dei CFC citati è rispettivamente: 1; 1; 0,8; 1 e 0,6. La produzione dei CFC è stata abbandonata in base ad accordi internazionali.
Altri composti implicati nel fenomeno sono gli
HCFC (Idroclorofluorocarburi), una classe di composti chimici che vengono utilizzati temporaneamente per rimpiazzare i CFC. Contengono cloro e per questo sono in grado di deteriorare la fascia di ozono nella stratosfera, ma molto meno efficacemente dei CFC. Hanno un ODP che varia a seconda dei composti fra 0,01 e 0,1. Anche la produzione di HCFC dovrà essere abbandonata (nel 2020 nelle nazioni occidentali e nel 2040 nei Paesi in via di sviluppo).
I
gas Halon, anche conosciuti come Bromofluorocarburi, sono composti costituiti da bromo, fluoro e carbonio. Gli halon sono utilizzati come agenti estinguenti del fuoco sia in sistemi fissi che in estintori portatili. Causano la riduzione della fascia di ozono perché contengono il bromo (che è molte volte più efficace nella distruzione della fascia di ozono di quanto possa esserlo il cloro). Il potenziale di eliminazione dell’ozono del halon 1301 e del 1211 sono rispettivamente 10 e 3, anche se recenti studi scientifici riportano 13 e 4.
N.B. tecnicamente tutti i composti che contengono carbonio e fluoro e/o cloro sono halon.
Anche altre sostanze sono implicate nella degradazione dell’ozono: per esempio il metilcloroformio ed il tetracloruro di carbonio (comuni solventi industriali) ed in definitiva tutti quei composti volatili che comprendono nella loro struttura atomi di cloro o bromo, come il bromuro di metile, una sostanza chimica molto utilizzata in agricoltura come fumigante per eliminare i parassiti.

 

 

buco dell'ozonoLa presenza dei vari inquinanti prodotti dall’uomo ha profondamente alterato i naturali meccanismi di formazione e degrazione dell’ozono stratosferico. I composti ODS nell’alta atmosfera causano infatti una lenta ma graduale degradazione dell’ozono, in modo particolarmente vistoso nell’area sopra l’Antartide. In questa zona durante l’inverno australe (in Maggio-Giugno) il Polo Sud si trova completamente immerso nelle tenebre. Nella media e bassa stratosfera si rende così evidente l’azione di una forte corrente circumpolare chiamata vortice polare. Questo vortice isola le grandi masse d’aria posizionate sopra il polo che per l’assenza dei raggi solari e per la mancanza di scambi termici con altre masse d’aria diventano sempre più fredde. Quando la temperatura raggiunge gli 80°C sotto lo zero si formano delle nubi di acido nitrico triidrato e di acqua ad alto contenuto di acido nitrico (normalmente presente in fase gassosa) chiamate nubi stratosferiche polari (PSC, Polar Stratospheric Clouds). Queste nubi costituiscono la superficie catalitica ideale per la formazione di tutta una complicata serie di reazioni che comporta la degradazione dei vari composti ODS e la liberazione di molecole biatomiche di Cloro (Cl2) e Bromo (Br2). All’insorgere della Primavera australe (Ottobre-Novembre) l’azione dei raggi del sole provoca la dispersione delle nubi stratosferiche polari e la scissione delle molecole biatomiche di cloro e bromo in singoli atomi altamente reattivi. L’improvvisa comparsa e liberazione di questi atomi provoca l’inizio di una catena di reazioni catalitiche che comporta la degradazione dell’ozono e la comparsa del cosiddetto “buco dell’ozono”. Gli atomi degli alogeni (cloro o bromo) agiscono come catalizzatori, combinandosi a ripetizione con molecole di ozono e formando una molecola di ossigeno e un monossido (ad es. Cl+O3 —> O2+ClO). Il monossido si combina poi con un atomo di ossigeno liberando ossigeno molecolare e un atomo dell’alogeno che ricomincia il processo (ClO+O —> O2+Cl). Con questo ciclo ripetitivo un singolo atomo di cloro o bromo può distruggere centinaia di molecole di ozono prima di venire neutralizzato (da sostanze come il metano, il perossido di idrogeno o l’idrogeno molecolare). Da notare che il bromo, pur essendo meno presente del cloro, è più reattivo; infatti le molecole volatili che contengono questo elemento hanno solitamente un potenziale di eliminazione dell’ozono relativamente più alto di altre sostanze come i CFC.
L’azione distruttiva delle sostanze ODS, pur essendo presente in ogni parte del globo, diventa particolarmente evidente proprio nella zona antartica per la formazione di queste nubi stratosferiche polari; in ogni caso è bene sottolineare che l’azione degli ODS si verifica dovunque nella stratosfera, seppure in maniera meno vistosa, perché l’azione dei raggi solari stratosferici comporta sempre la liberazione degli atomi di cloro e di bromo che fungono da catalizzatori nella degradazione dell’ozono.

 

La formazione della maggior parte dell’ozono della stratosfera avviene a più di 30 Km di altezza, in corrispondenza della zona equatoriale dove risulta più rilevante l’irraggiamento solare. Le radiazioni UV con una lunghezza d’onda inferiore ai 242 nm dissociano l’ossigeno molecolare in ossigeno atomico che, per la sua reattività, si combina rapidamente con una molecola di ossigeno dando origine all’ozono (O+O2 —> O3). A loro volta le molecole di ozono che si formano nel corso di questa reazione assorbono le radiazioni solari con lunghezza d’onda compresa fra 240 e 340 nm, e questo ne provoca la fotolisi che libera un atomo ed una molecola di ossigeno (O3 —> O2+O).
In definitiva questi processi instaurano un
equilibrio dinamico che mantiene la concentrazione del gas ozono pressochè costante (e che permette di schermare per assorbimento gran parte dei raggi UV). Si ritiene che la produzione globale di ozono attraverso questo meccanismo ammonti a circa 4000 tonnellate al secondo. Dalle zone equatoriali l’ozono viene trasportato verso i poli dai venti stratosferici associati con le aree cicloniche (i vortici polari) che si trovano sopra i poli stessi.
Le osservazioni da satellite e dalla terra hanno permesso di valutare la distribuzione media dell’ozono totale sia in funzione della latitudine che della stagione. L’ozono viene solitamente misurato come ozono colonnare, cioè come l’ozono presente in una colonna d’aria che si estende dalla superficie terrestre fino all’apice dell’atmosfera; viene misurato in
Unità Dobson (DU). Per avere un’idea delle quantità in gioco basti considerare questo: se si portassero 100 DU di ozono sulla superficie della terra si formerebbe uno strato spesso 1 millimetro. A livello dei tropici i livelli di ozono nel corso dell’anno sono tipicamente fra 250 e 300 DU; il valore si mantiene pressoché costante perché l’attività fotochimica rimane invariata durante tutto il corso dell’anno a causa dell’intensità costante dell’irraggiamento solare. A latitudini diverse le concentrazioni sono più soggette a variazioni. I valori massimi di concentrazione si trovano alle latitudini medio-alte. Per quanto riguarda le variazioni temporali il valore massimo assoluto si verifica all’inizio della primavera alle alte latitudini. In estate si osserva una diminuzione dell’ozono fino a raggiungere un minimo in autunno. Le piccole variazioni che si possono presentare nella distribuzione longitudinale sono essenzialmente dovute all’alternarsi delle terre emerse e dei mari.

 

Il buco dell’ozono ed in generale la diminuzione dell’ozono stratosferico non rappresentano al momento un rischio immediato per la salute dell’uomo. Questo, comunque, se le dimensioni del fenomeno non sono destinate a crescere ulteriormente, nel qual caso la situazione potrebbe diventare drammatica. L’ozono agisce infatti schermando la maggior parte delle pericolose radiazioni UV-B provenienti dal sole ed un drastico aumento delle radiazioni ultraviolette anche nelle zone popolate della terra potrebbe causare danni impensabili. Alcuni studi teorizzano che una diminuzione dell’1% dell’ozono colonnare possa comportare un aumento delle radiazioni ultraviolette a livello del suolo pari all’1,2%. I raggi UV-B sono in grado di attaccare e danneggiare molecole come il DNA e l’RNA, così se l’esposizione a questi raggi diviene eccessiva, si possono sviluppare sia dei melanomi che altri tipi di cancro della pelle. Un altro possibile effetto consiste nella creazione di varie interferenze nella regolazione dei meccanismi di difesa immunitaria; il tutto contribuisce all’aumento delle malattie a causa delle minori potenzialità difensive naturali di ogni persona. L’effetto più evidente e diretto è invece legato all’azione che i raggi UV esercitano sulla retina dell’occhio, dove provocano danni che possono rapidamente portare alla cecità. In effetti in Patagonia ed in Nuova Zelanda, regioni vicine al Polo Sud e quindi alla zona più colpita dalla diminuzione dell’ozono stratosferico, sono sempre più frequenti i casi di cecità fra le greggi di pecore.

In definitiva bisogna ricordare che è sempre importante proteggersi contro i raggi UV-B, anche a prescindere dalla riduzione della fascia di ozono, portando cappelli, occhiali da sole e utilizzando creme solari; in ogni modo, tutte queste precauzioni diventeranno sempre più indispensabili con l’aumentare della riduzione dell’ozono stratosferico e con l’allargarsi del famigerato “Buco dell’ozono”.

La presenza di una graduale diminuzione dell’ozono stratosferico comporta inevitabili danni anche a carico della fauna e della flora, anche se l’assorbimento delle radiazioni UV varia molto da un organismo ad un altro. Dato che la riduzione maggiore è presente, per il momento, in aree pressochè disabitate, gli effetti non sono ancora particolarmente gravi, almeno per gli animali superiori. Questi effetti si possono comunque sempre ricondurre all’azione dei raggi UV e più specificamente ai raggi UV-B.
Diversi organismi viventi hanno sviluppato particolari meccanismi di protezione dall’azione dei raggi UV-B: limitano la loro esposizione (alcuni organismi acquatici fermano la loro attività verso metà giornata, quando l’azione dei raggi UV è più intensa); alcuni si proteggono con dei pigmenti; altri possiedono dei meccanismi di riparazione del DNA o riparano i tessuti danneggiati (dalle scottature). In ogni caso, per la maggior parte degli organismi questi meccanismi diventano insufficienti quando aumentano i livelli di irradiazione UV-B.
Dato che queste radiazioni vengono assorbite da pochi strati di cellule (logicamente quelle più superficiali), gli organismi di dimensioni maggiori sono più protetti degli esseri più piccoli, come quelli unicellulari. In effetti gli organismi marini che costituiscono il fitoplancton e lo zooplancton e che giocano un ruolo cruciale nella catena alimentare marina, sono estremamente sensibili. Sulla base di alcune ricerche sembra che diverse specie di plancton siano al limite della massima tolleranza nei confronti delle radiazioni UV. Così, anche un piccolo aumento nei livelli degli UV-B potrebbe comportare un cambiamento estremamente negativo nella varietà e nella quantità degli organismi presenti nelle acque superficiali e di conseguenza, avere ripercussioni su tutta la comunità presente nelle acque.
Sulle piante le radiazioni UV comportano in genere un rallentamento della crescita a causa di un effetto limitante nella crescita della superficie fogliare e quindi dell’area deputata alla cattura dell’energia solare. In piante irradiate da raggi UV si verifica sempre un decadimento generale ed una riduzione nel peso secco. In ogni caso, non sono comunque disponibili delle informazioni scientifiche accurate sugli effetti causati dai raggi UV per tutti gli ecosistemi vegetali, in quanto finora sono stati studiati accuratamente solamente gli effetti su foreste temperate, praterie, tundra, zone alpine e soprattutto aree coltivate. Sulla base di questi studi sono state formulate diverse previsioni negative: tanto per fare un esempio, si ritiene che ad una diminuzione del 25% della concentrazione dell’ozono stratosferico corrisponda una percentuale equivalente di riduzione nella resa della soia. Bisogna sottolineare, però, che la maggior parte degli studi fanno riferimento a pochi esemplari coltivati in serra, e diverse ricerche indicano che almeno i due terzi delle piante presentano diversi gradi di resistenza all’azione dei raggi ultravioletti; inoltre molte specie selvatiche presentano una resistenza maggiore ai raggi UV-B delle corrispondenti specie coltivate.